\(\int \cot ^4(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx\) [376]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 114 \[ \int \cot ^4(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a \text {arctanh}(\cos (c+d x))}{16 d}-\frac {a \cot ^5(c+d x)}{5 d}-\frac {a \cot ^7(c+d x)}{7 d}-\frac {a \cot (c+d x) \csc (c+d x)}{16 d}+\frac {a \cot (c+d x) \csc ^3(c+d x)}{8 d}-\frac {a \cot ^3(c+d x) \csc ^3(c+d x)}{6 d} \]

[Out]

-1/16*a*arctanh(cos(d*x+c))/d-1/5*a*cot(d*x+c)^5/d-1/7*a*cot(d*x+c)^7/d-1/16*a*cot(d*x+c)*csc(d*x+c)/d+1/8*a*c
ot(d*x+c)*csc(d*x+c)^3/d-1/6*a*cot(d*x+c)^3*csc(d*x+c)^3/d

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2917, 2687, 14, 2691, 3853, 3855} \[ \int \cot ^4(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a \text {arctanh}(\cos (c+d x))}{16 d}-\frac {a \cot ^7(c+d x)}{7 d}-\frac {a \cot ^5(c+d x)}{5 d}-\frac {a \cot ^3(c+d x) \csc ^3(c+d x)}{6 d}+\frac {a \cot (c+d x) \csc ^3(c+d x)}{8 d}-\frac {a \cot (c+d x) \csc (c+d x)}{16 d} \]

[In]

Int[Cot[c + d*x]^4*Csc[c + d*x]^4*(a + a*Sin[c + d*x]),x]

[Out]

-1/16*(a*ArcTanh[Cos[c + d*x]])/d - (a*Cot[c + d*x]^5)/(5*d) - (a*Cot[c + d*x]^7)/(7*d) - (a*Cot[c + d*x]*Csc[
c + d*x])/(16*d) + (a*Cot[c + d*x]*Csc[c + d*x]^3)/(8*d) - (a*Cot[c + d*x]^3*Csc[c + d*x]^3)/(6*d)

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2687

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 2691

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sec[e +
 f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] - Dist[b^2*((n - 1)/(m + n - 1)), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 2917

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Dist[a, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[(g*Cos[e + f*x
])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = a \int \cot ^4(c+d x) \csc ^3(c+d x) \, dx+a \int \cot ^4(c+d x) \csc ^4(c+d x) \, dx \\ & = -\frac {a \cot ^3(c+d x) \csc ^3(c+d x)}{6 d}-\frac {1}{2} a \int \cot ^2(c+d x) \csc ^3(c+d x) \, dx+\frac {a \text {Subst}\left (\int x^4 \left (1+x^2\right ) \, dx,x,-\cot (c+d x)\right )}{d} \\ & = \frac {a \cot (c+d x) \csc ^3(c+d x)}{8 d}-\frac {a \cot ^3(c+d x) \csc ^3(c+d x)}{6 d}+\frac {1}{8} a \int \csc ^3(c+d x) \, dx+\frac {a \text {Subst}\left (\int \left (x^4+x^6\right ) \, dx,x,-\cot (c+d x)\right )}{d} \\ & = -\frac {a \cot ^5(c+d x)}{5 d}-\frac {a \cot ^7(c+d x)}{7 d}-\frac {a \cot (c+d x) \csc (c+d x)}{16 d}+\frac {a \cot (c+d x) \csc ^3(c+d x)}{8 d}-\frac {a \cot ^3(c+d x) \csc ^3(c+d x)}{6 d}+\frac {1}{16} a \int \csc (c+d x) \, dx \\ & = -\frac {a \text {arctanh}(\cos (c+d x))}{16 d}-\frac {a \cot ^5(c+d x)}{5 d}-\frac {a \cot ^7(c+d x)}{7 d}-\frac {a \cot (c+d x) \csc (c+d x)}{16 d}+\frac {a \cot (c+d x) \csc ^3(c+d x)}{8 d}-\frac {a \cot ^3(c+d x) \csc ^3(c+d x)}{6 d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(239\) vs. \(2(114)=228\).

Time = 0.19 (sec) , antiderivative size = 239, normalized size of antiderivative = 2.10 \[ \int \cot ^4(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {2 a \cot (c+d x)}{35 d}-\frac {a \csc ^2\left (\frac {1}{2} (c+d x)\right )}{64 d}+\frac {a \csc ^4\left (\frac {1}{2} (c+d x)\right )}{64 d}-\frac {a \csc ^6\left (\frac {1}{2} (c+d x)\right )}{384 d}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{35 d}+\frac {8 a \cot (c+d x) \csc ^4(c+d x)}{35 d}-\frac {a \cot (c+d x) \csc ^6(c+d x)}{7 d}-\frac {a \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )}{16 d}+\frac {a \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )}{16 d}+\frac {a \sec ^2\left (\frac {1}{2} (c+d x)\right )}{64 d}-\frac {a \sec ^4\left (\frac {1}{2} (c+d x)\right )}{64 d}+\frac {a \sec ^6\left (\frac {1}{2} (c+d x)\right )}{384 d} \]

[In]

Integrate[Cot[c + d*x]^4*Csc[c + d*x]^4*(a + a*Sin[c + d*x]),x]

[Out]

(-2*a*Cot[c + d*x])/(35*d) - (a*Csc[(c + d*x)/2]^2)/(64*d) + (a*Csc[(c + d*x)/2]^4)/(64*d) - (a*Csc[(c + d*x)/
2]^6)/(384*d) - (a*Cot[c + d*x]*Csc[c + d*x]^2)/(35*d) + (8*a*Cot[c + d*x]*Csc[c + d*x]^4)/(35*d) - (a*Cot[c +
 d*x]*Csc[c + d*x]^6)/(7*d) - (a*Log[Cos[(c + d*x)/2]])/(16*d) + (a*Log[Sin[(c + d*x)/2]])/(16*d) + (a*Sec[(c
+ d*x)/2]^2)/(64*d) - (a*Sec[(c + d*x)/2]^4)/(64*d) + (a*Sec[(c + d*x)/2]^6)/(384*d)

Maple [A] (verified)

Time = 0.37 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.17

method result size
parallelrisch \(-\frac {3 \left (-\frac {256 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}+\left (\sec ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (\sec \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\cos \left (d x +c \right )+\frac {7 \cos \left (3 d x +3 c \right )}{15}+\frac {\cos \left (5 d x +5 c \right )}{15}-\frac {\cos \left (7 d x +7 c \right )}{105}\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {13 \cos \left (d x +c \right )}{6}+\frac {47 \cos \left (3 d x +3 c \right )}{36}+\frac {\cos \left (5 d x +5 c \right )}{12}\right ) \left (\csc ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right ) a}{4096 d}\) \(133\)
derivativedivides \(\frac {a \left (-\frac {\cos ^{5}\left (d x +c \right )}{6 \sin \left (d x +c \right )^{6}}-\frac {\cos ^{5}\left (d x +c \right )}{24 \sin \left (d x +c \right )^{4}}+\frac {\cos ^{5}\left (d x +c \right )}{48 \sin \left (d x +c \right )^{2}}+\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{48}+\frac {\cos \left (d x +c \right )}{16}+\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{16}\right )+a \left (-\frac {\cos ^{5}\left (d x +c \right )}{7 \sin \left (d x +c \right )^{7}}-\frac {2 \left (\cos ^{5}\left (d x +c \right )\right )}{35 \sin \left (d x +c \right )^{5}}\right )}{d}\) \(138\)
default \(\frac {a \left (-\frac {\cos ^{5}\left (d x +c \right )}{6 \sin \left (d x +c \right )^{6}}-\frac {\cos ^{5}\left (d x +c \right )}{24 \sin \left (d x +c \right )^{4}}+\frac {\cos ^{5}\left (d x +c \right )}{48 \sin \left (d x +c \right )^{2}}+\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{48}+\frac {\cos \left (d x +c \right )}{16}+\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{16}\right )+a \left (-\frac {\cos ^{5}\left (d x +c \right )}{7 \sin \left (d x +c \right )^{7}}-\frac {2 \left (\cos ^{5}\left (d x +c \right )\right )}{35 \sin \left (d x +c \right )^{5}}\right )}{d}\) \(138\)
risch \(\frac {a \left (105 \,{\mathrm e}^{13 i \left (d x +c \right )}+3360 i {\mathrm e}^{10 i \left (d x +c \right )}+1540 \,{\mathrm e}^{11 i \left (d x +c \right )}+3360 i {\mathrm e}^{8 i \left (d x +c \right )}+1085 \,{\mathrm e}^{9 i \left (d x +c \right )}+6720 i {\mathrm e}^{6 i \left (d x +c \right )}+1344 i {\mathrm e}^{4 i \left (d x +c \right )}-1085 \,{\mathrm e}^{5 i \left (d x +c \right )}+672 i {\mathrm e}^{2 i \left (d x +c \right )}-1540 \,{\mathrm e}^{3 i \left (d x +c \right )}-96 i-105 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{840 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{7}}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{16 d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{16 d}\) \(186\)
norman \(\frac {-\frac {a}{896 d}-\frac {a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{384 d}+\frac {a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2240 d}+\frac {a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{192 d}+\frac {3 a \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{320 d}+\frac {a \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d}-\frac {a \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d}+\frac {a \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d}-\frac {a \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d}-\frac {3 a \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{320 d}-\frac {a \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{192 d}-\frac {a \left (\tan ^{14}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2240 d}+\frac {a \left (\tan ^{15}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{384 d}+\frac {a \left (\tan ^{16}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{896 d}+\frac {a \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16 d}\) \(288\)

[In]

int(cos(d*x+c)^4*csc(d*x+c)^8*(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-3/4096*(-256/3*ln(tan(1/2*d*x+1/2*c))+sec(1/2*d*x+1/2*c)^6*(sec(1/2*d*x+1/2*c)*(cos(d*x+c)+7/15*cos(3*d*x+3*c
)+1/15*cos(5*d*x+5*c)-1/105*cos(7*d*x+7*c))*csc(1/2*d*x+1/2*c)+13/6*cos(d*x+c)+47/36*cos(3*d*x+3*c)+1/12*cos(5
*d*x+5*c))*csc(1/2*d*x+1/2*c)^6)*a/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 221 vs. \(2 (102) = 204\).

Time = 0.32 (sec) , antiderivative size = 221, normalized size of antiderivative = 1.94 \[ \int \cot ^4(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {192 \, a \cos \left (d x + c\right )^{7} - 672 \, a \cos \left (d x + c\right )^{5} + 105 \, {\left (a \cos \left (d x + c\right )^{6} - 3 \, a \cos \left (d x + c\right )^{4} + 3 \, a \cos \left (d x + c\right )^{2} - a\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 105 \, {\left (a \cos \left (d x + c\right )^{6} - 3 \, a \cos \left (d x + c\right )^{4} + 3 \, a \cos \left (d x + c\right )^{2} - a\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 70 \, {\left (3 \, a \cos \left (d x + c\right )^{5} + 8 \, a \cos \left (d x + c\right )^{3} - 3 \, a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{3360 \, {\left (d \cos \left (d x + c\right )^{6} - 3 \, d \cos \left (d x + c\right )^{4} + 3 \, d \cos \left (d x + c\right )^{2} - d\right )} \sin \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^8*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/3360*(192*a*cos(d*x + c)^7 - 672*a*cos(d*x + c)^5 + 105*(a*cos(d*x + c)^6 - 3*a*cos(d*x + c)^4 + 3*a*cos(d*
x + c)^2 - a)*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 105*(a*cos(d*x + c)^6 - 3*a*cos(d*x + c)^4 + 3*a*cos(
d*x + c)^2 - a)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 70*(3*a*cos(d*x + c)^5 + 8*a*cos(d*x + c)^3 - 3*a*
cos(d*x + c))*sin(d*x + c))/((d*cos(d*x + c)^6 - 3*d*cos(d*x + c)^4 + 3*d*cos(d*x + c)^2 - d)*sin(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \cot ^4(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)**8*(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.04 \[ \int \cot ^4(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {35 \, a {\left (\frac {2 \, {\left (3 \, \cos \left (d x + c\right )^{5} + 8 \, \cos \left (d x + c\right )^{3} - 3 \, \cos \left (d x + c\right )\right )}}{\cos \left (d x + c\right )^{6} - 3 \, \cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{2} - 1} - 3 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} - \frac {96 \, {\left (7 \, \tan \left (d x + c\right )^{2} + 5\right )} a}{\tan \left (d x + c\right )^{7}}}{3360 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^8*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/3360*(35*a*(2*(3*cos(d*x + c)^5 + 8*cos(d*x + c)^3 - 3*cos(d*x + c))/(cos(d*x + c)^6 - 3*cos(d*x + c)^4 + 3*
cos(d*x + c)^2 - 1) - 3*log(cos(d*x + c) + 1) + 3*log(cos(d*x + c) - 1)) - 96*(7*tan(d*x + c)^2 + 5)*a/tan(d*x
 + c)^7)/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 229 vs. \(2 (102) = 204\).

Time = 0.33 (sec) , antiderivative size = 229, normalized size of antiderivative = 2.01 \[ \int \cot ^4(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {15 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 35 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 21 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 105 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 105 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 105 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 840 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + 315 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {2178 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 315 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 105 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 105 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 105 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 21 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 35 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 15 \, a}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7}}}{13440 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^8*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/13440*(15*a*tan(1/2*d*x + 1/2*c)^7 + 35*a*tan(1/2*d*x + 1/2*c)^6 - 21*a*tan(1/2*d*x + 1/2*c)^5 - 105*a*tan(1
/2*d*x + 1/2*c)^4 - 105*a*tan(1/2*d*x + 1/2*c)^3 - 105*a*tan(1/2*d*x + 1/2*c)^2 + 840*a*log(abs(tan(1/2*d*x +
1/2*c))) + 315*a*tan(1/2*d*x + 1/2*c) - (2178*a*tan(1/2*d*x + 1/2*c)^7 + 315*a*tan(1/2*d*x + 1/2*c)^6 - 105*a*
tan(1/2*d*x + 1/2*c)^5 - 105*a*tan(1/2*d*x + 1/2*c)^4 - 105*a*tan(1/2*d*x + 1/2*c)^3 - 21*a*tan(1/2*d*x + 1/2*
c)^2 + 35*a*tan(1/2*d*x + 1/2*c) + 15*a)/tan(1/2*d*x + 1/2*c)^7)/d

Mupad [B] (verification not implemented)

Time = 10.60 (sec) , antiderivative size = 385, normalized size of antiderivative = 3.38 \[ \int \cot ^4(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {a\,\left (15\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{14}-15\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{14}+35\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}-35\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-21\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}-105\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}-105\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}-105\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+315\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-315\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+105\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+105\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+105\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+21\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+840\,\ln \left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\right )}{13440\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7} \]

[In]

int((cos(c + d*x)^4*(a + a*sin(c + d*x)))/sin(c + d*x)^8,x)

[Out]

(a*(15*sin(c/2 + (d*x)/2)^14 - 15*cos(c/2 + (d*x)/2)^14 + 35*cos(c/2 + (d*x)/2)*sin(c/2 + (d*x)/2)^13 - 35*cos
(c/2 + (d*x)/2)^13*sin(c/2 + (d*x)/2) - 21*cos(c/2 + (d*x)/2)^2*sin(c/2 + (d*x)/2)^12 - 105*cos(c/2 + (d*x)/2)
^3*sin(c/2 + (d*x)/2)^11 - 105*cos(c/2 + (d*x)/2)^4*sin(c/2 + (d*x)/2)^10 - 105*cos(c/2 + (d*x)/2)^5*sin(c/2 +
 (d*x)/2)^9 + 315*cos(c/2 + (d*x)/2)^6*sin(c/2 + (d*x)/2)^8 - 315*cos(c/2 + (d*x)/2)^8*sin(c/2 + (d*x)/2)^6 +
105*cos(c/2 + (d*x)/2)^9*sin(c/2 + (d*x)/2)^5 + 105*cos(c/2 + (d*x)/2)^10*sin(c/2 + (d*x)/2)^4 + 105*cos(c/2 +
 (d*x)/2)^11*sin(c/2 + (d*x)/2)^3 + 21*cos(c/2 + (d*x)/2)^12*sin(c/2 + (d*x)/2)^2 + 840*log(sin(c/2 + (d*x)/2)
/cos(c/2 + (d*x)/2))*cos(c/2 + (d*x)/2)^7*sin(c/2 + (d*x)/2)^7))/(13440*d*cos(c/2 + (d*x)/2)^7*sin(c/2 + (d*x)
/2)^7)